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FOREWORD





It has been known for 20 years that LES predicts incorrectly mean velocity gradients near the ground. This serious error causes 
inaccuracy in other important predictions including, in the presence of convection, the entire structure of the ABL, heat, humidity 
and contaminant transport, and acoustic propagation. Many studies have tried to eliminate the overshoot through the SFS 
model, but none have been entirely successful because the mechanisms are not understood. We have finally succeeded in 
explaining the mechanisms underlying the overshoot and we have defined the requirements for high-accuracy LES of the ABL 
surface layer. These requirements include a mix of physical, numerical and modeling issues. Underlying the explanation is a 
crucial distinction between “numerical friction” and real friction and their similar roles. We show that numerical friction includes a 
mix of modeling, grid, and numerical elements that underlie the overshoot as well as poor predictions of law-of-the-wall. The 
interaction among the elements underlying numerical friction underlies the overshoot and high-accuracy LES of the surface 
layer. Underlying these primary issues are related issues that must be addressed in high-accuracy LES, including numerical 
instability, lower boundary condition, and details of the SFS closure prediction and grid.





STATEMENT OF THE PROBLEM STUDIED 





In 1992 Mason and Thomson made the critical observation that their large-eddy simulations (LES) of the atmospheric boundary 
layer (ABL) did not predict correctly the mean velocity profile near the ground. They observed that gradients of mean velocity 
are much higher than predicted by law-of-the-wall scaling and shown by data in the part of the computational domain adjacent 
to the ground. They assumed that the over-prediction was a consequence of the failure of the Smagorinsky model, and showed 
that the over-prediction could be altered (but not removed) by adding a random solenoidal acceleration to the Navier-Stokes 
equation, in effect randomizing the subfilter-scale (SFS) stress divergence. In the intervening years it has been discovered that 
this over-prediction is a fundamental flaw in LES of the ABL when the surface layer is shear-dominated, and is particularly 
associated with eddy viscosity representations of SFS stress. A number of researchers have found that it is possible to reduce 
the degree of error either by adjusting details of the eddy viscosity representation or by adjusting the eddy viscosity closure 
itself. However, none have succeeded in fully eliminating the error, primarily because the mechanisms underlying the flaw are 
not understood. 





The issue is much more serious in predicting geophysical boundary layers than simply an inaccurate prediction of mean velocity 
near the ground. Over-prediction of mean shear affects the prediction of turbulent kinetic energy production and directly alters 
turbulence structure and turbulence-driven fluxes in the part of the planetary boundary layer in which humans reside. 
Consequently, the application of LES to problems that require accurate prediction of meteorological events near the ground is 
questionable. Examples include ground-to-ground acoustic propagation, dispersion of contaminants originating at the ground, 
and wind speed and direction. As importantly, it has been shown that because atmospheric thermals originate at the ground in 
the part of the boundary layer where mean shear is over-predicted, the LES predictions of thermal structure are also incorrect 
under moderately convective conditions, not only near the surface but throughout the ABL, and that these errors are a direct 
consequence of the over-prediction of mean shear at the surface. Consequently, LES predictions of transport from the lower to 
upper ABLhumidity, heat, contaminants and other scalarsare fundamentally inaccurate, and could adversely affect other 
predictions such as cloud formation and long-range scalar dispersion.





Given the importance of near-surface predictions in geophysical flows, our program of research focused on resolving the now 
23-year-old problem of inaccurate LES prediction of mean gradients in the surface layer. 





SUMMARY OF THE MOST IMPORTANT RESULTS 





After a long period of methodical detective work and a combination of mathematical and physical analysis combined with an 
extensive large-eddy simulation (LES) campaign of atmospheric boundary layer (ABL) simulations, we succeeded in solving the 
puzzle of why it is that large-eddy simulation of the atmospheric boundary layer over-predicts mean shear adjacent to the 
ground, and we have learned what elements are needed to address the problem and improve accuracy of surface layer 
predictions. As might be expected, the solution is multi-faceted, and we developed a series of requirements for high-accuracy 
LES of the ABL that involve a mix of numerical, gridding, and modeling issues. From our analysis we order the solution process 
into a hierarchy of inter-related issues that must be addressed for high-accuracy LES of the surface layer.





A highly comprehensive and though explanation of the background to the fundamental problem in LES, the mathematical theory 
we developed, the "R-ReLES" parameter space we created, and the analysis of over 100 ABL LES simulations to place results 
within this parameter space and validate both the theory and the fundamental explanation for the error, is given in an invited 
paper by the Physics of Fluids entitled "Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-
the-Wall Scaling" by Brasseur & Wei. The paper appeared in 2010 and has attracted a great deal of attention within the large 
community that applies LES to the simulation of high Reynolds number wall bounded flows. This work has also lead to a large 
number of invited presentations at universities, national labs and meetings.








Deviations from the law-of-the-wall in mean velocity and velocity gradient in the inertial surface layer arise from a competition 
between the characteristic velocity and length scales  and other velocity or length scales that enter either from the true fluid 
physics or during the conversion to the discretized dynamical system that is ultimately advanced on the computer. Turbulence 
motions in the surface layer at the characteristic length scale z, for example, may compete with motions at the boundary layer 
scale (Khanna & Brasseur 1997) or with the influences of surface friction or roughness that are characterized by the viscous 
and roughness length scales. If sufficiently strong, these confounding scales will alter the scaling of the mean velocity gradient 
in the inertial surface layer. Law-of-the-wall assumes that this is not the case and experiments in the laboratory and atmosphere 
have generally supported this assumption when there are no confounding scales and the ratio of the outer to viscous length and 
roughness scales are sufficiently large. However, when the influence of confounding characteristic scales is sufficiently strong 
to compete with the characteristic velocity and length scales in the inertial surface layer, deviations from LOTW result.





What we have shown is that, in the conversion from the exact continuous dynamical system to the LES discretized dynamical 
system that is actually advanced on the computer, additional characteristic scales are introduced into the simulated dynamics 
that can interfere with LOTW scaling in the surface layer when sufficiently strong. Several elements in the simulation might 
introduce spurious characteristic scales: (i) models of existing terms and new terms that are introduced into the governing 
equation, (ii) models for unknown boundary conditions, (iii) the type and order of the discretization of derivatives together with 
grid geometry, and (vi) algorithmic additions, for example, to maintain numerical stability. The current study has focused 
primarily on the influences of a spurious viscous length scale that is introduced within the computational domain by the model 
for the SFS stress tensor. This spurious scale is a reflection of the manner in which the net transfer of turbulence energy from 
resolved to subfilter scales is modeled. Whereas the interscale interactions that underlie the transfer of energy are purely 
inertial in reality, all practical closures for the SFS stress tensor model the net transfer of energy from the resolved scales by a 
dissipative mechanism that removes energy at the smallest resolved scales. 





However, the SFS stress is often not the only term that is modeled in the conversion from the continuous to the discrete 
dynamical system. At the very high Reynolds numbers of practical interest, and at which law-of-the-wall is valid, the surface 
viscous layer, if it exists, cannot be resolved in a large-eddy simulation. The vertical derivatives in resolved and SFS stress 
therefore require that a model be supplied for the total stress at the surface. Hybrid schemes couple a RANS SFS stress model 
on a very high aspect ratio RANS grid in an extremely thin surface viscous layer with large-eddy simulation and SFS closure on 
an LES grid beginning in the lower inertial surface layer, also very near the surface. Thus, the LES part of the simulation obtains 
the lower boundary condition on stress from the RANS part of the simulation, which is far from exact. Nonhybrid schemes must 
supply a model for the total horizontal shear stress, generally written as a function of resolved velocity within the computational 
domain. So, in addition to any spurious scales introduced within the computational domain by the SFS stress model, there 
exists the possibility that the model for surface shear stress might introduce spurious scales at the boundary of the LES 
computational domain.





We have found experimentally that standard surface stress models do introduce spurious effects that force deviations from 
LOTW at the first couple grid levels adjacent to the surface. Fig. 10 shows that this additional confounding contribution from the 
lower stress boundary condition is obscured when the frictional contribution from the interior SFS stress is sufficiently 
overwhelming to produce the overshoot. When the LES is moved into the HAZ so that the viscous effects causing the overshoot 
are suppressed, the confounding influences of the surface stress model become apparent and spread vertically as the relative 
contribution from the interior SFS stress model diminishes with increasing R. We have also shown that adjustments to surface 
shear stress are possible which significantly reduce the spurious influence of standard surface stress models
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FOREWORD 

It has been known for 20 years that large-eddy simulation (LES) predicts incorrectly mean velocity 
gradients near the ground. This serious error causes inaccuracy in other important predictions including, 
in the presence of convection, the entire structure of the atmospheric boundary layer (ABL), heat, 
humidity and contaminant transport, and acoustic propagation. Many studies have tried to eliminate the 
overshoot through the SFS model, but none have been entirely successful because the mechanisms are not 
understood. We have finally succeeded in explaining the mechanisms underlying the overshoot and we 
have defined the requirements for high-accuracy LES of the ABL surface layer. These requirements 
include a mix of physical, numerical and modeling issues. Underlying the explanation is a crucial 
distinction between “numerical friction” and real friction and their similar roles. We show that numerical 
friction includes a mix of modeling, grid, and numerical elements that underlie the overshoot as well as 
poor predictions of law-of-the-wall. The interaction among the elements underlying numerical friction 
underlies the overshoot and high-accuracy LES of the surface layer. Underlying these primary issues are 
related issues that must be addressed in high-accuracy LES, including numerical instability, lower 
boundary condition, and details of the SFS closure prediction and grid. 
 

STATEMENT OF THE PROBLEM STUDIED  

In 1992 Mason and Thomson made the critical observation that their large-eddy simulations of the 
atmospheric boundary layer (ABL) did not predict correctly the mean velocity profile near the ground. 
The pointed out that the mean velocity gradient scaled according to inertial Law-of-the-Wall (LOTW) 
scaling, 
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 produces a well-defined peak within the surface layer; the LES does not predict the LOTW. This 
“overshoot” has since been pointed out and studied by many researchers.  

Mason and Thomson assumed that the over prediction of gradients of mean velocity relative to law-
of-the-wall scaling and shown by data in the part of the computational domain adjacent to the ground is a 
consequence of the failure of the Smagorinsky model, and showed that the over-prediction could be 
altered (but not removed) by adding a random solenoidal acceleration to the Navier-Stokes equation, in 
effect randomizing the subfilter-scale (SFS) stress divergence. In the intervening years it has been 
discovered that this over-prediction is a fundamental flaw in LES of the ABL when the surface layer is 
shear-dominated, and is particularly associated with eddy viscosity representations of SFS stress. A 
number of researchers have found that it is possible to reduce the degree of error either by adjusting 
details of the eddy viscosity representation or by adjusting the eddy viscosity closure itself. However, 
none have succeeded in fully eliminating the error, primarily because the mechanisms underlying the flaw 
are not understood.  

The issue is much more serious in predicting geophysical boundary layers than simply an inaccurate 
prediction of mean velocity near the ground. Over-prediction of mean shear affects the prediction of 
turbulent kinetic energy production and directly alters turbulence structure and turbulence-driven fluxes in 
the part of the planetary boundary layer in which humans reside. Consequently, the application of LES to 
problems that require accurate prediction of meteorological events near the ground is questionable. 
Examples include ground-to-ground acoustic propagation, dispersion of contaminants originating at the 
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ground, and wind speed and direction. As importantly, it has been shown that because atmospheric 
thermals originate at the ground in the part of the boundary layer where mean shear is over-predicted, the 
LES predictions of thermal structure are also incorrect under moderately convective conditions, not only 
near the surface but throughout the ABL, and that these errors are a direct consequence of the over-
prediction of mean shear at the surface. Consequently, LES predictions of transport from the lower to 
upper ABLhumidity, heat, contaminants and other scalarsare fundamentally inaccurate, and could 
adversely affect other predictions such as cloud formation and long-range scalar dispersion. 

Given the importance of near-surface predictions in geophysical flows, our program of research 
focused on resolving the now 23-year-old problem of inaccurate LES prediction of mean gradients in the 
surface layer.  

SUMMARY OF THE MOST IMPORTANT RESULTS  

After a long period of methodical detective work and a combination of mathematical and physical 
analysis combined with an extensive large-eddy simulation (LES) campaign of atmospheric boundary 
layer (ABL) simulations, we succeeded in solving the puzzle of why it is that large-eddy simulation of the 
atmospheric boundary layer over-predicts mean shear adjacent to the ground, and we have learned what 
elements are needed to address the problem and improve accuracy of surface layer predictions. As might 
be expected, the solution is multi-faceted, and we developed a series of requirements for high-accuracy 
LES of the ABL that involve a mix of numerical, gridding, and modeling issues. From our analysis we 
order the solution process into a hierarchy of inter-related issues that must be addressed for high-accuracy 
LES of the surface layer. 

A highly comprehensive and though explanation of the background to the fundamental problem in 
LES, the mathematical theory we developed, the "R-ReLES" parameter space we created, and the 
analysis of over 100 ABL LES simulations to place results within this parameter space and validate both 
the theory and the fundamental explanation for the error, is given in an invited paper by the Physics of 
Fluids entitled "Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-
the-Wall Scaling" by Brasseur & Wei. The paper appeared in 2010 and has attracted a great deal of 
attention within the large community that applies LES to the simulation of high Reynolds number wall 
bounded flows. This work has also lead to a large number of invited presentations at universities, national 
labs and meetings. 

Deviations from the law-of-the-wall in mean velocity and velocity gradient in the inertial surface 
layer arise from a competition between the characteristic velocity and length scales  and other velocity or 
length scales that enter either from the true fluid physics or during the conversion to the discretized 
dynamical system that is ultimately advanced on the computer. Turbulence motions in the surface layer at 
the characteristic length scale z, for example, may compete with motions at the boundary layer scale 
(Khanna & Brasseur 1997) or with the influences of surface friction or roughness that are characterized 
by the viscous and roughness length scales. If sufficiently strong, these confounding scales will alter the 
scaling of the mean velocity gradient in the inertial surface layer. Law-of-the-wall assumes that this is not 
the case and experiments in the laboratory and atmosphere have generally supported this assumption 
when there are no confounding scales and the ratio of the outer to viscous length and roughness scales are 
sufficiently large. However, when the influence of confounding characteristic scales is sufficiently strong 
to compete with the characteristic velocity and length scales in the inertial surface layer, deviations from 
LOTW result. 

What we have shown is that, in the conversion from the exact continuous dynamical system to the 
LES discretized dynamical system that is actually advanced on the computer, additional characteristic 
scales are introduced into the simulated dynamics that can interfere with LOTW scaling in the surface 
layer when sufficiently strong. Several elements in the simulation might introduce spurious characteristic 
scales: (i) models of existing terms and new terms that are introduced into the governing equation, (ii) 
models for unknown boundary conditions, (iii) the type and order of the discretization of derivatives 
together with grid geometry, and (vi) algorithmic additions, for example, to maintain numerical stability. 
The current study has focused primarily on the influences of a spurious viscous length scale that is 
introduced within the computational domain by the model for the SFS stress tensor. This spurious scale is 
a reflection of the manner in which the net transfer of turbulence energy from resolved to subfilter scales 
is modeled. Whereas the interscale interactions that underlie the transfer of energy are purely inertial in 
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reality, all practical closures for the SFS stress tensor model the net transfer of energy from the resolved 
scales by a dissipative mechanism that removes energy at the smallest resolved scales. 

However, the SFS stress is often not the only term that is modeled in the conversion from the 
continuous to the discrete dynamical system. At the very high Reynolds numbers of practical interest, and 
at which law-of-the-wall is valid, the surface viscous layer, if it exists, cannot be resolved in a large-eddy 
simulation. The vertical derivatives in resolved and SFS stress therefore require that a model be supplied 
for the total stress at the surface. Hybrid schemes couple a RANS SFS stress model on a very high aspect 
ratio RANS grid in an extremely thin surface viscous layer with large-eddy simulation and SFS closure 
on an LES grid beginning in the lower inertial surface layer, also very near the surface. Thus, the LES 
part of the simulation obtains the lower boundary condition on stress from the RANS part of the 
simulation, which is far from exact. Nonhybrid schemes must supply a model for the total horizontal 
shear stress, generally written as a function of resolved velocity within the computational domain. So, in 
addition to any spurious scales introduced within the computational domain by the SFS stress model, 
there exists the possibility that the model for surface shear stress might introduce spurious scales at the 
boundary of the LES computational domain. 

We have found experimentally that standard surface stress models do introduce spurious effects that 
force deviations from LOTW at the first couple grid levels adjacent to the surface. Fig. 10 shows that this 
additional confounding contribution from the lower stress boundary condition is obscured when the 
frictional contribution from the interior SFS stress is sufficiently overwhelming to produce the overshoot. 
When the LES is moved into the HAZ so that the viscous effects causing the overshoot are suppressed, 
the confounding influences of the surface stress model become apparent and spread vertically as the 
relative contribution from the interior SFS stress model diminishes with increasing R. We have also 
shown that adjustments to surface shear stress are possible which significantly reduce the spurious 
influence of standard surface stress models 

 
 
 

DETAILS OF THE ANALYSES DEVELOPED AND SOLUTIONS ACHIEVED 

I. Background on “the Overshoot problem” 

Before developing our analysis into essential mechanisms underlying the prediction of LOTW scaling 
of mean velocity gradient in the surface layer with large-eddy simulation, we set the stage with discussion 
into the overshoot and its history. Previous studies, many of which have produced significant reductions 
in the degree of overshoot, have provided important clues that lead to the theory developed here, and 
present results that a theory should explain. 

A. Consequences of an overshoot in mean shear rate 

Figure 1 shows essential aspects of the overshoot from several previous large-eddy simulations of the 
neutral boundary layer that have focused on this issue since Mason & Thomson1. Because the overshoot 
is associated with the shear-dominated region of the boundary layer, it is particularly apparent in the fully 
shear-driven neutral boundary layer (Fig. 1). Piomelli and Balaras16 point out that in DES of the shear-
driven boundary layer, “unphysical, nearly one-dimensional, wall streaks were present in the RANS 
region … and shorter-scale outer-layer eddies were progressively formed as one moved away from the 
wall.” Similar observations have been made in the neutral atmospheric boundary layer17. 

In the moderately convective atmospheric boundary layer an overshoot is produced in the shear-
dominated surface layer while the mixed layer is buoyancy dominated18. In the presence of convection, 
vertically driven thermals couple the surface and outer boundary layers. Khanna & Brasseur17 showed that 
the elongated structure of streamwise turbulence fluctuations generated near the surface by the interaction 
between strong mean shear and turbulence (streaks) are the source of thermals that penetrate the outer 
boundary layer. These coherent elongated vertical motions interact with the horizontal mean wind to form 
highly coherent secondary rolls that extend to the top of the boundary layer and can extend 20-40 
boundary layer thicknesses in the mean wind direction19.  Thus, there is a direct coupling between the 
near-surface shear-driven streaks and very large eddy structure of the boundary layer. (It is possible that 
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the mechanisms that underlie the creation of the longitudinal convective rolls may be related to the 
mechanisms underlying much weaker highly elongated structures that have been observed in the log layer 
of the neutral boundary layer20.) 

An important negative consequence of the inner-outer coupling is that the near-surface errors from the 
overshoot are driven vertically to infect the entire boundary layer. To demonstrate this, Khanna & 
Brasseur17 applied two SFS models to the same LES; one produced a stronger overshoot than the other. 
The LES with the stronger overshoot produced much stronger and coherent convective thermals and 
boundary layer rolls with much larger horizontal integral scales that persisted to the top of the boundary 
layer. Furthermore, these overly coherent thermals are spuriously aligned with the mean geostrophic 
wind. This spuriously strong thermal structure will adversely influence vertical transport to the upper 
atmosphere of momentum, thermal energy, contaminants, and humidity. Error in humidity predictions 
will likely enter cloud cover predictions and produce error in solar radiative heating at the earth's surface. 
Incorrect prediction of vertical transport of CO2 and other greenhouse gases may affect related predictions 
of upper atmosphere chemistry. 

The negative consequences of the overshoot in mean velocity gradient arise essentially from the 
incorrect prediction of Reynolds stress anisotropy near the surface. Juneja & Brasseur21 argued that the 
incorrect anisotropy results from a feedback interaction between the exaggerated mean gradient and 
Reynolds stress production as a consequence of inherent under-resolution at the first grid level that occurs 
in LES of high Reynolds number turbulent boundary layers when the first grid level is in the inertial 
layer. The errors are exacerbated by any mechanism that enhances vertical transport, including 
buoyancy17 and boundary layer separation. 

B. Previous studies 

Given the fundamental importance of the overshoot, there have been a number of studies that have 
attempted either to understand the cause of the overshoot21, or have attempted to remove it. Mason and 
Thomson1, for example, suggested that the overshoot is particular to eddy viscosity closures where energy 
is removed at each point from the resolved scales in contrast with the known forward/backward nature of 
energy transfer at a point. To introduce “backscatter” into the simulation, they added to the resolved 
momentum equation a Langevin-like stochastic acceleration term, in addition to a SFS stress divergence 
using the Smagorinsky closure for SFS stress. However, Mason & Thomson1 made another significant 
modificationthey reduced the eddy viscosity near the surface by making the Smagorinsky length scale 
proportional to z at grid nodes near the surface.  

In Fig. 1 we compare results from four other groups of researchers between 1994 and 2005 who 
explicitly addressed the problem of the overshoot in LES of the ABL. The surface layer is shaded to 
indicate the region over which m  should be predicted as a straight vertical line and from which a grid-
independent prediction for mean velocity should emanate. Fig. 1(a) shows predictions from Sullivan et 

al
11 who argued that, as the surface is approached, the SFS stress closure should transition from an eddy 

viscosity model appropriate to LES to a model more appropriate to the Reynolds-averaged Navier-Stokes 
equation (RANS). Although their mixed eddy viscosity model was purely dissipative (no backscatter), the 
overshoot was significantly reduced compared to a pure SFS model. Like Mason & Thomson1, their 
mixed model results in a reduction in net SFS stress and eddy viscosity near the surface. Whereas the 
overshoot could be reduced, and perhaps even eliminated, by the adjustments to the SFS model, a 
dependence of ( )z  on z persisted (Fig 1(a)). The Sullivan et al.

11 model was further modified by Ding et 

al.
22. Recently, Leveque et al.

23 modified the Smagorinsky eddy-viscosity by subtracting mean shear from 
the instantaneous resolved rate-of-strain tensor. Whereas they applied the model only to low Reynolds 
number boundary layers with partially resolved viscous layers, the effect is again to reduce the eddy 
viscosity near the surface. However the LES predictions failed to predict constant ( )z  over the entire 
surface layer. 

Kosovic24 added additional nonlinear terms in velocity gradient to the eddy viscosity closure. 
Whereas major improvement in the overshoot in the neutral ABL was obtained (Fig. 1(b)), grid resolution 
was quite low and the improvement degraded at higher grid resolution. Dynamic formulations of the 
Smagorinsky eddy viscosity closure have been applied by Porté-Agel et al.

25 and Esau26 to improve the 
overshoot and capture the LOTW. We show in Fig. 1(c) results from Porté-Agel et al.

25 who developed a 
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scale-dependent formulation of the dynamic Smagorinsky model that produces a reduction in eddy 
viscosity near the surface and removes an apparent undershoot with the standard dynamic model (solid 
line). Whereas the modifications significantly reduced the overshoot, constant ( )z  was not obtained 
over the surface layer. 

Chow et al.
27 combined a number of modeling elements, including a dynamic eddy viscosity model28, 

a “resolvable subfilter scale stress model” component29 combined with a deconvolution procedure30, and a 
“canopy model”31. As shown in Fig. 1(d), whereas over-prediction of mean shear near the surface could 
be reduced with certain combinations of elements, it was not clear which modeling elements were 
responsible, and a robust grid-independent solution was not obtained. A recent calculation by Drobinski et 

al.
32, however, indicated that a suppression of the overshoot was possible using a standard one-equation 

model but with a more refined grid. Their result will be discussed in Sects. VI.B and VII.B in context 
with the current analysis. 

Figure 2 shows that what we refer to here as an “overshoot” is described as a “logarithmic layer 
mismatch” or “super buffer layer” in the detached-eddy simulations of Nikitin et al.

14. Spalart15 and 
Piomelli and Balaras16 described this as a fundamental unresolved problem in DES. Whereas the 
simulations of Fig. 1 contain only the inertial LOTW layer due to the presence of surface roughness and 
the fluctuating surface stress is modeled, the DES simulations used RANS to model a viscous surface 
layer with no slip at the wall (shown in Fig. 2(a)) below an inertial-dominated surface layer that is 
simulated with LES, as shown in Fig. 2(b). The logarithmic layer mismatch, shown by the circled part of 
the mean velocity profile Fig. 2(a), is shown in Fig. 2(b) to be equivalent to the overshoot phenomenon 
discussed above. 

Figures 1 and 2 motivate the current research; we seek an understanding of the essential mechanisms 
underlying the overshoot that will both eliminate the overshoot and predict a vertical line in  vs. m z  
over the entire surface layer with a grid-independent prediction over the entire boundary layer. 
Historically, the assumption has been that the solution to the overshoot problem is strictly a closure issue 
and all attempts to modify LES to predict LOTW have been through adjustments to the SFS stress tensor 
model. Although there have been significant advances made, the fundamental mechanisms underlying the 
overshoot are not understood so that a clear path to robust grid-independent LES that eliminates the 
overshoot and predicts LOTW scaling has been elusive. We show here that the fundamental issues 
underlying the overshoot and its resolution are broader than the SFS model and involve basic 
characteristics of the SFS stress closure integrated with the construction of the LES grid. 

C. Useful clues 

In the studies described above, a number of important observations have been made that provide clues 
to underlying issues and which require explanation: 
1. The overshoot is influenced by the details of the SFS model. This has been discussed above in Sect. 
II.B (Fig. 1). Whereas there have been many variants to the modeling process, all have employed an eddy 
viscosity component. A common characteristic of the more successful adjustments to the modeling 
process is a reduction in eddy viscosity near the surface compared to unadulterated models. 
2. The overshoot is tied to the grid. Khanna & Brasseur18 pointed out that increasing the resolution of the 
grid, keeping all other elements of the simulation unchanged, does not diminish the magnitude of the 
overshoot, but moves the peak in m  closer to the surface in proportion to the vertical grid spacing , z. 
Similarly, Spalart15 pointed out that in DES “grid refinement merely moves the same amount of 
[logarithmic layer] mismatch closer to the wall.” This dependence of the overshoot on grid resolution is 
clear, for example, in Fig. 1(d). Why the location of the overshoot should be proportional to z, however, 
is not understood. Khanna & Brasseur18 pointed out that, because the horizontal integral scale of vertical 
velocity scales on z, vertical velocity is always under-resolved at the first grid level independent of grid 
resolution and that this under-resolution has negative consequences that must be addressed to eliminate 
the overshoot. Specifically, they proposed that this inherent under-resolution at the first grid level 
somehow ties the overshoot to the grid. The mechanisms were unclear, but were felt to be somehow 
associated with the lack of performance of SFS models when the integral scales are under resolved. This 
shall be discussed in Sec. IV.B. 
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3. The prediction of mean velocity gradient is grid-dependent. A requirement for any successful 
numerical simulation is grid independence in the solution for mean variables33. As illustrated in Fig. 1(d), 
the solution for mean velocity gradient often does not converge as the grid is refined; each grid produces a 
different solution not only in the overshoot region but throughout the boundary layer. Grid dependence in 
the flow is apparent when different solutions in the literature are compared (e.g., Andren et al.

10). We 
shall show in Sect. VI.C that a grid-independent solution is only possible when both the overshoot is 
suppressed and LOTW scaling are obtained. 

It is apparent from these previous studies that although the overshoot is influenced by the closure for 
SFS stress, the overshoot problem is only part of the broader issue of accurately predicting the LOTW, 
and that these are both modeling and numerical issues. 

II. An Analysis of the fundamental Nature of the Overshoot:  
the First observation 

In this section we focus specifically on the overshoot. A primary mechanism underlying the overshoot 
and its resolution can be understood by comparing true inertial-vs.-viscous scaling underlying the 
stationary fully developed smooth-wall channel flow in the high Reynolds number limit with scaling of 
large-eddy simulation of the same high Reynolds number channel flow with unresolved viscous or 
roughness layer. We shall find that we can relate the true physics of the channel flow to the spurious 
physics of the simulated channel flow that is model and algorithmically dependent and cannot be entirely 
eliminated. 

A. Scaling high Reynolds number smooth wall turbulent channel flow 

Consider a fully developed stationary smooth wall incompressible channel flow at Reynolds numbers 
sufficiently high to support the classical LOTW in the surface layer. The local and global mean axial 
momentum balances are, respectively, 

 0( ) ( ) ( )=  and t totT z T z T z TP P

x z z z x





   
   

    
, (2) 

where 2
0 *(0)totT T u   and  is the half channel width, or boundary layer depth (the height where 

0totT  ). The second expression in (2) results from a global force balance. The coordinates (x,y,z) are in 
the mean-flow, spanwise, and wall-normal directions, respectively. P(x) is the mean pressure, and 

 tot tT T T  is the total mean stress, where Tt and T are Reynolds stress and mean viscous stress, 
respectively: 

 ( ) ' ' ,    ( )t

U
T z u w T z

z
 


  


. (3) 

Capital letters and primed quantities indicate mean flow and fluctuating variables, respectively, (u,v,w) 
are the velocity components in the (x,y,z) directions, (, are density and viscosity, and the angle 
brackets denote ensemble averaging. 

Integrating Eq. (2) in z and replacing ( )T z  with * ( )m

u
z

z




 , the exact equation for the normalized 

mean gradient is 

 ( ) 1 ( )m t

z
z z T z



  
    

 
, (4) 

where 0/t tT T T   is the ratio of the Reynolds stress Tt(z) to the wall stress T0, and /z z 

   is the 
surface-normal coordinate nondimensionalized by the viscous surface layer scale */ u  , where = 
/. Equation (4) states that the total stress Ttot(z), split between the viscous and inertial contributions on 
LHS and RHS of (4), decreases linearly from T0 at the surface to zero at the channel center-plane. Near 
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the surface ( / 1z   ) in the friction-dominated layer ( 5~z  ), the turbulent stress is negligible (
1tT   ) and Eq. (4) is well approximated by 

 ( )      ( 5)~m z z z     . (5) 

This result suggests that ( )m z  exceeds 1 when z+ > 1/ 2.5 (for   0.4), which is well within the 
friction-dominated portion of the surface layer. 

Equation (5) indicates that an overshoot in ( )m z  exists in the smooth-surface high Reynolds 

number channel flow in a region bounded from below by 2.5z   and from above by the lower margin 
of the inertial LOTW layer and upper margin of the buffer layer. In Fig. 3 we show that this is indeed the 
case. We replot, in this figure, data from direct numerical simulations (DNS) of the smooth-wall channel 
at different Reynolds numbers that has been graciously made available to the scientific community by 
Iwamoto et al.

34,35 at Re  = 300, 395, and 642, and at Re  = 2003 by Hoyas & Jimenez36, where 

*Re /u   . Figure 3(a) shows that ( )m z  exceeds 1 when z+ exceeds 2.5 and peaks at z+  10 
with a maximum value of about 2.3 independent of Reynolds number. m  approaches 1 at z+ 

 40-50. 
Comparing Fig. 3(c) with Fig. 3(d), it is significant that the peak in ( )m z  occurs nearly coincident with 
the crossover between turbulent stress Tt(z) and viscous stress T(z). Both the location of overshoot and 
the location of the crossover occur at 10  . Since the position of this overshoot scales on the viscous 
scale and corresponds to the transition between the dominance of turbulent stress above and viscous stress 
below, this overshoot reflects the application of an inertial length scale z in the portion of the surface 
layer where the appropriate length scale is the viscous surface scale  . Fig. 3(c) and Fig. 3(d) show that 
the overshoot and the crossover in T(z) and Tt(z), move physically closer to the surface with increasing 
Reynolds number without a reduction in maximum m . 

B. LES of high Reynolds number turbulent channel flow 

We compare the previous analysis with large-eddy simulation of the same high Reynolds number 
channel flow analyzed in Sect. III.A, but in which either a viscous layer exists that is fully unresolved ( 

<< z) or the surface is rough with fully unresolved roughness scale ( 0 zz  ). The momentum equation 

for the resolved velocity r

iu  is 

 
( ) 1r r SFSr r

i j iji

j i j

u uu p

t x x x





  
   

   
 , (6) 

where the viscous force has been scaled out of the momentum balance on account of the high local 
Reynolds numbers on all grid nodes within the computational domain (surface viscous layers are 
unresolved or nonexistence). The subfilter-scale (SFS) stress tensor SFS

ij  is modeled. We apply a 
superscript r to indicate a variable that is carried forward in the simulation as a resolved variablethat is, 
after the process of explicit and implicit filtering in the algorithmic advancement of the modeled 
discretized version of Eq. (6). Explicit filtering is generally carried out algorithmically as a dealiasing 
step1, typically in pseudo-spectral LES. Implicit filtering arises from the dissipative nature of the model 
for SFS

ij , from numerical dissipation within the discretized version of Eq. (6), and from any dissipative 
elements introduced algorithmically as the discretized dynamical system is advanced in time. 

The ensemble mean of Eq. (6) for stationary fully developed high Reynolds number channel flow is: 

                                                      
1 Algorithmically, (ur

u
r) in equation (6) should be written as ˆ( )r r ru u to indicate the common application of a 

second explicit filter r̂  on the nonlinear term. 
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( ) ( )( ) S totR

T z T zT zP

x z z z

 
  

   
, with 

2
*uP

x






 


, (7) 

where 2
0 *(0)totT T u  . The second equation is the global force balance. Total stress tot R ST T T   is 

now the summation of a turbulent stress TR formed from the fluctuating resolved velocity components and 
the shear component of the mean SFS stress tensor, TS: 

 ' '( ) r r

RT z u w  , 13( ) SFS

ST z    . (8) 

Whereas the divergence of the SFS “stress” is physically an inertial contribution to the force balance, in 
application all SFS models are structured so as to contain a frictional contribution to the equation of 
motion. This is explicitly true of eddy viscosity models and mixed models which include an eddy 
viscosity term.  

In what follows, we do not restrict our theoretical treatment to any particular SFS stress model. We 
do, however, use eddy viscosity closures for guidance and to carry out numerical experiments. 

We seek a mechanism to extract the frictional component of the complete modeled tensor SFS

ij ; that 

is, we seek an estimate of a scalar viscosity that extracts the part of SFS

ij  that is parallel to the resolved 

strain-rate tensor, r

ijs , in the mean. For the purposes of determining the underlying causes of the 
overshoot in the highly shear-dominated part of the boundary layer, we define a “LES viscosity,” les(z), 
as the proportionality between 13

SFS   and 132 /rs U z   : 

 
13

( )( )
2

S
les r

T z
z

s



 , (closure independent)           (9) 

where r

ijs  is the resolved strain-rate tensor. Furthermore, since we are focused on the first few grid points 

adjacent to the surface, we parameterize LES viscosity with its value at the first grid level, 1( )LES z , and 
we define the normalized LES viscosity as follows: 

 1
( )( ),   ( ) les

LES les les

LES

z
z z


  



  . (10) 

We emphasize that the definitions in (9) and (10) do not assume an eddy viscosity model and can be made 
for any closure of the SFS stress tensor. However, this estimate of frictional content does is only valid 
with strong mean shear at the first grid level, and is therefore appropriate to the neutral boundary layer, 
and the stable and moderately convective atmospheric boundary layers with shear-dominated turbulence 
at z1. 

Replacing TS in Eq. (7) with ( )LES les

U
z

z
   


, integrating in z, and using inertial LOTW scaling (Eq. 

1), produces the following expression for ( )m z : 

 ( ) 1 ( )
( )
LES

m R

les

z z
z T z

z



 






 
    

 
, (11) 

where 
* 0

,  ,   and   
LES

LES

LES R
LES R

Tz
z T

u T




     . (12) 

As in the exact channel flow equations, 2
0 *(0)totT T u  , so that ( )RT z  is the ratio of the resolved part 

of the Reynolds shear stress to the total wall shear stress. Unlike the viscous layer where we could argue 
that the Reynolds stress is a small percentage of wall stress and approximate Eq. (4) by Eq. (2), we cannot 
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a-priori argue that 0RT T . However, at the first few grid points, / 1z    and ( ) ~ (1)les z O  , so that 
(11) can be approximated by 

  ( ) 1      (first few grid points)m LES Rz z T     . (13) 

The magnitude of 
RT   depends on the relative content of resolved to SFS stress in total stress

tot R ST T T  . When the separation between resolved and subfilter-scales takes place in the inertial range 

of turbulence scales, implying that all integral scales are well resolved, then TS << TR , and 
RT   cannot be 

neglected in Eq. (13). However, as discussed in Sect. II.C, some integral scales are inherently under-
resolved at the first few grid levels in high Reynolds number LES of wall-bounded flows. Thus, it may be 
the case that 1RT    close to the surface so that Eq. (13) is approximated by ( )m LESz z   . If this 
were the case, then we would reach the same conclusion as when Eq. (4) was reduced to Eq. (5) in the 
viscous sublayer of the smooth-wall channel flow: an overshoot would occur when 1/ 2.5~LESz    , 
that is when 2.5~ LES

z  . 

Figure 4 shows that, indeed, S RT T  near the surface in a typical LES of the neutral atmospheric 

boundary layer2 using the Smagorinsky model, so that ( )m LESz z    and an overshoot is produced at 

2.5~LESz  . In fact, Fig. 4(a,b) is very similar to the curves in Fig. 3(a,b) of the real overshoot in the 
smooth wall channel flow. The spurious overshoot initiates between the first and second grid levels and 
peaks nearly coincident with the crossover between TR and TS, very similar to Fig. 3 where the real 
overshoot is found to be coincident with the crossover between Tt and T. 

The overshoot in LES appears to arise from physics similar to the true overshoot in smooth wall 
channel flow. However, in LES the frictional layer that causes the overshoot is a numerical LES frictional 

layer near the surface that arises from the frictional nature of the modeled SFS stress (and any numerical 
and algorithmic additions to dissipation). This conclusion analyzed further in the following sections.

C. The first criterion 

The observation from Fig. 4 that the overshoot is associated with a reduction in the resolved Reynolds 
stress to below the mean SFS stress suggests that the spurious frictional content of the model for SFS 
stress has introduced a spurious length scale  

LES  that interferes with the inertial scale z that should 

dominate the surface layer. The spurious interference of 
LES  with inertial scaling and the consequent 

spurious overshoot are essentially the same physics that underlie the production of the real overshoot in 
the friction-dominated part of the LOTW layer of the smooth-wall channel flow. However, unlike the true 
viscous layer, which is a necessary consequence of frictional force with no-slip, the spurious LES 
frictional layer must be controlled to eliminate the frictionally induced spuriously large mean gradients 
near the surface. If it were possible to maintain the dominance of TR over TS to the surface, then the 
spurious frictional contribution from the SFS stress model would remain suppressed. This observation 
suggests a criterion for elimination of the overshoot, that 

 1

1

* ~ (1)R

S

T
O

T
   , (closure independent)             (14) 

where the subscripts 1 mean “at the first grid level.” The critical value * , to be determined 
experimentally, is an order 1 quantity but may depend on the model for SFS stress, the lower boundary 
condition, the stability of the ABL, the numerical algorithm, etc. 

                                                      
2 We describe the details of our large-eddy simulations of the atmospheric boundary layer in Appendix B. 



10 
 

D. Understanding the ratio  and the first criterion  

On what does   depend and how can it be controlled in a large-eddy simulation? To gain insight into the 
nature of   and find an answer to this question, we develop expressions for   based on eddy viscosity 
representations for the deviatoric part of the SFS stress, [ ] [ / 3]SFS SFS SFS

ij dev ij kk ij     :  

 [ ] 2  ,  SFS r

ij dev t ij t t ts u     , (15) 

where t and 2
tu  characterize length and energy at the smallest resolved scales. t  is often taken as a 

fixed length scale 
t tC  where 1/3( )x y z      is the grid size ( , ,x y z    are the grid spacings in 

x,y,z) and Ct is a model constant. Some models embed z-dependence into 
t
 in the form ( ) ( )t t tz C z  

where ( )t z is specified to decrease towards the surface and approaches  away from the surface1. 
Dynamic models take t tC  , but determine Ct dynamically with the result that ( )t tC C z  reduces 
near the surface25. Thus, in each case the modeled length scale ( )t z  decreases towards the surface. In 
the current work we develop scaling from eddy viscosity closures with constant t tC  , but shall 
discuss our results in context with z-dependent t in the Discussion, Sect.VII.B. 

The space-time variability in ( , )t t x  is modeled through a fluctuating velocity scale ( , )tu tx , given 

for the Smagorinsky closure by 1/ 2
, ( , ) (2 )r r

t smag ij iju t s s x . In the basic one-equation model 

,1 ( , ) ( , )t equ t e t x x , where ( , )e tx  represents the SFS kinetic energy, modeled through a prognostic 

equation37,32. In both models t tC  Here we develop expressions using the Smagorinsky closure with 

tC  replaced by 2
sC , as is traditional. However we shall present results for both the Smagorinsky and one-

equation eddy viscosity models. 
Independent of the model, 13 13[ ]SFS SFS

dev   and 

 
1 13 13 1 1311 1 1

2 2SFS r r

S LES tT s s        , (16) 

where 1 1LES t    with 
' '

13 1
1

131 1

1
r

t

r

t

s

s






 
  
 
 

. (17) 

We have found from LES of the neutral ABL that 1 is typically 1.05. The ensemble mean of the eddy 
viscosity at the first grid level with the Smagorinsky closure is 

 2 2 1/ 2 2 2 2 2
131 1 1

1

(2 ) 2r r r

t s ij ij s s

U
C s s C s C

z


 
       

 
, (18) 

where 
' '

1/ 2 1
13 21 1

13 1

1( ) 2 1
8

r r

ij ijr r r

ij ij
r

s s
s s s

s

 
  
 
 

  

is well approximated by 13 1
2 rs  since the strain-rate fluctuations are nearly all subfilter-scale (this is 

especially true at the first grid level where the integral scales are minimally or poorly resolved). We write 
the mean streamwise velocity gradient in a form appropriate for inertial scaling in the surface layer3: 
                                                      
3 When the Coriolis force is present, as in LES of the atmospheric boundary layer, the velocity at the first grid level 
is at an angle 1 to the geostrophic wind velocity above the boundary layer. In this case, equations (19), (20), (21), 
(23), (24), (27), (28) contain an additional factor cos1, as given in Appendix A.
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 *
13 1

1 1 1

2 r uU
s

z z

 
  

 
. (19) 

In Eq. (19) 1 is defined as the value required to make the LHS equal to the RHS at the first grid level. 
Only if LOTW is predicted by the LES, so that 1  is constant through the surface layer, will 1  be the 
predicted value of the von Kármán constant. 

Inserting (19) into (18) and (17) leads to the following expression for the LES viscosity: 

 1
*

1
LES s zD u





  , where 2 4/3

s s RD C A . (Smagorinsky)          (20) 

/ /R x z y zA        is the aspect ratio of the grid and 1z z  is the vertical grid spacing. As will be 

discussed at length, Eq. (20) indicates that the LES viscosity is proportional to the combination 2 4/3
s RC A , 

and therefore is altered both by the constant in the SFS model and by the aspect ratio of the grid, as well 
as by the vertical grid spacing.  

Applying Kolmogorov scaling38 and LOTW scaling to the one-equation model produces a result 
similar to Eq. (20), but with sD  replaced by 8/9

k k RD C A  and with 1  replaced by a different order one 
constant, . The main point is that with the eddy viscosity closure, the LES viscosity is proportional to the 
product of model constant and grid aspect ratio, each raised to a power that depends on the closure. 

In order to develop an expression for  , we note that since the total shear stress is tot R ST T T  ,   
is given by 

 1

1 1

2
2 *( )1 1tot

S S

T u

T T

 
     , (closure independent)     (21) 

where 1

0

2
1tot

tot

T N

T N








  . (22) 

In (21) and (22) 
0

2
*totT u  and / zN    is the number of grid points from the surface to the top of 

the boundary layer. 2 is generally very close to 1.

Inserting Eq. (19) for 13 1

rs  and Eq. (20) for LES  into 
1 13 1

2 r

S LEST s , and then inserting this 

result for 
1ST  into Eq. (21) produces the following expression for  : 

 1 1
tD


   , (eddy viscosity)           (23) 

where 2 1/    is generally very close to 1. For the Smagorinsky closure, 1   and 
2 4/3

t s s RD D C A  , whereas for the one-equation model 8/9
t k k RD D C A   and  is a different order 

one constant. 
The eddy viscosity closure was used in the derivation of Eq. (23) to provide insight into the 

mechanisms underlying   and how it can be systematically adjusted in large-eddy simulation in order to 
move the LES into the supercritical regime * . We learn that the ratio of resolved to SFS stress at 
the first grid level can be increased either by reducing the model constant or by reducing the grid aspect 
ratio and that these two changes act in combination through: 

 a b

t t RD C A ,  (24) 
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where the model constant 
tC  (Eq. 15) and AR enter in this combination through the LES viscosity, Eq. 

(20), and the powers a and b are model-dependent. Thus, LES viscosity can be decreased and   
increased by reducing either or both Ct and AR to reduce tD . 

The explanation behind the effects of model constant and AR on   is in the manner that each 
reduction affects the balance between resolved and SFS stress within the total stress ( )totT z  that is fixed 
by the global momentum balance. Reducing the model constant directly reduces the average SFS stress 
TS. Reducing the aspect ratio corresponds to an increase in resolution in the horizontal, which moves 
vertical velocity variance and Reynolds stress from subfilter-scales to resolved scales in the horizontal. 
The consequence of both effects is to reduce TS relative to TR, and therefore to increase the ratio

1 1
/R ST T . Similarly, both effects reduce LES viscosity. 

III. The Balance between Numerical Friction and Inertia:  
a Second Observation 

The above suggests that the mechanisms that underlie the generation of a mean gradient overshoot 
and its consequences are associated with numerical LES friction that, in the modeled dynamical system, 
forces a physical response similar to that underlying the overshoot in Newtonian turbulent channel flow 
(Fig. 3) that results from molecular friction. Correspondingly, like the real viscous layer in smooth wall 
channel flow that arises from a change in scaling from z to */ u  , the overshoot in LES reflects a 
transition in dominance from the inertial surface scale z to a numerical LES viscous length scale 

*/
LES LES u   that dominates near the surface. LES produces an overshoot in ( )m z  as a result of the 

spurious dominance of this length scale 
LES  in a region where the integral scales should scale on z. 

However, for the LOTW to exist in an inertia-dominated surface layer, inertial effects must be 
sufficiently strong relative to viscous forces, as measured by the ratio of the boundary layer depth to the 
viscous wall scale, the Reynolds number Re /   . This suggests the existence of a “LES Reynolds 
number,” Re /

LESLES  . Since friction in the discretized LES dynamical system is at the core of the 
overshoot, we must consider all consequences of friction, including the requirement that inertial effects 
dominate viscous effects sufficiently to produce the LOTW scaling, */ ~ /U z u z  . 

In particular, in the smooth wall channel flow the inertial layer will only reflect the LOTW when 
inertia dominates the viscous force within the surface layer sufficiently that Re  exceeds a critical value, 

*Re . The DNS data of Fig. 3 shows that the LOTW is not captured in the viscous channel flow even at 
Re = 2003, when the viscous layer (defined by the peak in m ) is only 2% of the surface layer.  

Similarly, one can expect that LES of the high Reynolds number boundary layer can only produce 
LOTW scaling when inertia in the discretized dynamical system dominates friction sufficiently that the 
LES Reynolds number ReLES  exceeds some critical value, *ReLES . Indeed one can also postulate a 
transitional ReLES  which must be exceeded to support turbulence in the discretized LES dynamical 
system. In Fig. 5 we show four large-eddy simulations of the atmospheric boundary layer at increasing 
values of ReLES . Similar to Fig. 3 for DNS of channel flow where the peak in the overshoot scales on the 
viscous scale  , with the exception of the lowest ReLES  (thin solid curve with small dots), the overshoot 
in LES scales on the numerical LES viscous scale, 

LES  (Fig. 5(a)). In fact, both the true channel-flow 
overshoot and the spurious LES overshoot peak at 10 corresponding viscous units. Thus, the LES 
overshoot moves closer to the surface along with 

LES  as Re /
LESLES  increases (Fig. 5(c)) and the 

numerical LES viscous layer occupies a correspondingly smaller percentage of the surface layer. 
Similarly, the peak in ( )m z  coincides with the crossover between mean resolved and SFS stress TR and 
TS  (Fig. 5d) so that the crossover also scales on 

LES  (Fig. 5(b)). 
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The thin solid curve (with small dots) in Fig. 5(c) is included to illustrate the consequence of a LES 
Reynolds number that is too low to support turbulence. The mean velocity profile is qualitatively similar 
to the parabolic profile characteristic of laminar Newtonian channel flow. Thus, although the LES 
equation contains no true frictional term, the numerical LES friction inherent in the model and adjusted 
by the grid as described by LES  in Eq. (20) can, like real friction, dampen inertial motions and prevent 
turbulence within the discretized dynamical system advanced in the LES.  

The frictional content of the simulation embodied by LES  should, in principle, be extended to include 
the numerical dissipation within the specific discretization that is applied to advance the LES equations in 
time with a SFS model. The LES presented in Sect. VI apply the pseudo-spectral method in the horizontal 
and finite difference in the vertical on a staggered mesh and is minimally dissipative. Significant frictional 
content within the numerical algorithm might strengthen the overshoot beyond what is described here. 

A. The second and third criteria 

The first criterion discussed in Sec. III.C is a necessary condition to eliminate the overshoot but is not 
a sufficient condition to correctly predict LOTW scaling in the high Reynolds number surface layer—that 
is, constant ( )z  is the surface layer. A second criterion is necessary: that ReLES  exceed a critical *ReLES

 
to achieve LOTW scaling in the simulated dynamical system. In the presence of the overshoot, one would 
expect that to predict the LOTW in the part of the surface layer that is not directly affected by numerical 
LES friction, *ReLES  would have to achieve values in the thousands similar to *Re  in real frictional 
channel flow. However, unlike DNS of channel flow where the overshoot is real and cannot be 
eliminated, in LES of high Reynolds number boundary layers the overshoot and its frictional sources are 
spurious. Therefore, the critical Reynolds number *ReLES  required to satisfy the second criterion turns out 

to be much lower when *  (and the overshoot is eliminated) than when the overshoot is maintained 
as in Fig. 5. 

To show this we use Eq. (19) to write: 

 
1

*
13 1

1 1

2 r

S LES LES

u
T s

z
 


  . (closure independent)      (25) 

Inserting Eq. (25) into Eq. (21) yields an expression for ReLES  that is valid independent of the SFS 
model: 

 
2 1

Re ( 1)LES

N

 
  . (closure independent)      (26) 

Thus ReLES  depends both on   and on the vertical grid resolution N . (Note that in Fig. 5(c) the LES 
give by the solid curve has low ReLES  because of low vertical grid resolution.) The critical LES Reynolds 

number *ReLES  is therefore associated not only with the critical ratio of resolved to SFS stress * , but 

also with a critical vertical resolution, *N  where 

 
*

* *

2 1

Re ( 1)LES

N

 
   . (closure independent)      (27) 

The third criterion, that N  exceed a critical value *N , follows from the second criterion, 
*Re ReLES LES  when * . 

One way to understand the requirement for a minimum vertical resolution to produce high accuracy 
LES of the boundary layer is simply as a manifestation of the standard computational requirement that all 
special regions with their own characteristic dynamics be well resolved for accurate numerical simulation. 
The surface layer is an example of a region with special dynamics that requires good resolution. The 
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surface layer occupies ~15-20% of the boundary layer depth at high Reynolds numbers. Resolving this 
layer with, say, 10 grid points in the vertical therefore leads to an estimate for *N  of ~50-65. Recognizing 

that *  and *ReLES
 are model-dependent, we can estimate *ReLES

 roughly for * 1   to be 
*Re 250 325LES  . This estimate assumes that the overshoot has been eliminated and that the LOTW 

has been captured with 1 0.4   . That is, we assume that there are no additional confounding 
influences that cause the LES to deviate from the LOTW. (In Sect. VII we shall discuss confounding 
influences.) This estimate for *ReLES

 is well over an order of magnitude lower than what we would 

estimate by analogy with *Re  in DNS of channel flow if the overshoot were retained, but confined to a 
sufficiently thin, numerically viscous, layer adjacent to the surface. 

We shall find (Sect. VI) that, for our current LES of the ABL with the Smagorinsky eddy viscosity 
closure, 45-50 is a reasonable estimate for *N  and 350 is a reasonable estimate for *ReLES

. The good 

news is that a vertical grid resolution *2 ~ 90 100zN N   is not overly severe and doable on current 
mainframes. The bad news is that most calculations in the literature are of LES with vertical resolutions 
below critical. Interestingly, we shall show in Sect. V.B that, in addition to subcritical resolution in the 
vertical, there are practical limitations to the maximum vertical resolution in LES of the high Reynolds 
number boundary layer. 

B. Understanding the LES Reynolds number and the three criteria 

To develop greater insight into the LES Reynolds number and its control, we evaluate 
Re /

LESLES   using the Smagorinsky eddy viscosity representation for the SFS stress as was done to 

understand   in Sect. III.D. There we derived an expression for the LES viscosity, LES  (Eq. 20). Using 
this expression, the numerical LES viscous length scale is given by: 

  1

*
LES

LES
t zD

u


 


   , (eddy viscosity)        (28) 

where 1   for the Smagorinsky closure. Dividing  by Eq. (28), or replacing   in Eq. (26) by Eq. 
(23), produces the following expression for the LES Reynolds number: 

 
1

ReLES

t

N

D




 . (eddy viscosity)          (29) 

Several interesting observations can be extracted from Eqs. (28) and (29). Since the overshoot scales 
on 

LES  and peaks at 10
LES  (Fig. 5), the observation made in Sect. II.C from previous studies—that the 

overshoot is tied to the grid—can now be explained. Equation (28) shows that if neither the model 
constant nor the grid aspect ratio are altered while the grid is refined, the LES viscous scale 

LES , and 

therefore the peak in m , will move closer to the surface in proportion to the grid spacing, z. However, 

since a b

t t RD C A  is left unchanged during the grid refinement,   and the magnitude of the overshoot 
will not changethe overshoot simply moves closer to the surface as shown in Figs. 3 and 5. In 
particular, Fig. 5 shows that as the overshoot moves towards the surface in proportion with the grid 
spacing at constant AR and Ct, the ratio 

1 1
/R ST T   and magnitude of peak m  remain unchanged and 

the locations of peak m  remains attached to the crossover between TR and TS. 

A second interpretation follows by replacing *ReLES  with */
LES  in Eq. (27). The criterion 

* 1   is then equivalent to: 
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*

2 1
* ~ 0.2

1
LES LES

z z

   
 

   
. (closure independent)      (30) 

Equation (30) states that the spurious length scale 
LES  arising from friction within the SFS model and 

grid under-resolution in a large-eddy simulation must be confined sufficiently well within the first grid 
cell for numerical LES friction to not adversely affect the LES. Note that Eq. (30) is equivalent to the 
requirement that 1 5~LES

z  : the first grid level must be at least five times than the spurious viscous length 
scale. 

The inequality (30) is satisfied when * , so that the first and second criteria are met when the 
spurious viscous length scale is sufficiently small relative to the grid spacing. However (30) does not 
guarantee the third criterion, *N N  . This is because the overshoot peaks at 10

LES , so that the 

condition given by (30) still allows partial resolution of the overshoot (e.g., when 10 / ~ 2)
LES z  . One 

can therefore interpret the addition of the third criterion, *N N  , as demanding that the spurious 
frictional length scale 

LES  be buried both sufficiently far within the first grid level z and within the 
boundary layer  that the grid is given no opportunity to either create an overshoot or alter LOTW scaling 
through the influence of friction within the surface layer. 

IV. A Framework for High-Accuracy Large-Eddy Simulation:  
the “High-Accuracy Zone” 

By comparing Eq. (23) for   with Eq. (29) for ReLES  we learn that reducing the model constant 

and/or the grid aspect ratio in the combination a b

t t RD C A  causes both   and ReLES  to increase (and, 
correspondingly, /

LES z   to decrease). However, increasing only the vertical resolution increases the 
LES Reynolds number but has no effect on the ratio of resolved to SFS stress,  . This observation leads 
to the concept of a “ ReLES  parameter space” in which high-accuracy LES of the high Reynolds 
number boundary layer could be developed. Within this framework, one can systematically adjust LES of 
the boundary layer so that, in the high Reynolds number limit, the overshoot is suppressed and the LOTW 
is captured. The ReLES  parameter space is illustrated in Fig. 6; a large-eddy simulation of the 
boundary layer is identified as a point on a plot of   against ReLES . In subsequent simulations, the LES 
is adjusted to move the point within the ReLES  parameter space relative to the critical parameters 

* , *ReLES  and *N . 
For the LES to capture the LOTW while resolving the overshoot, the simulation must live in the 

rectangular space * , *Re ReLES LES . We have roughly estimated * ~ 1  and *Re ~ 350LES . 

However in addition to the criteria *  and *Re ReLES LES , we have argued for a third criterion, 
*N N  .   and ReLES  are linearly related by Eq. (26): 

 2 1 Re 1LES
N

  
   

 
. (closure independent)      (31) 

Thus, N  enters in the slope of   vs. ReLES . In Fig. 6 we plot Eq. (31) as a series of lines with constant 
slope 2 1 / N  . Since LOTW is only captured in the supercritical region of the ReLES  parameter 
space, in general 1  will vary from point to point on lines of constant slope 2 1 / N  . However the 
variation in 1  is not so great as to obscure the strong inverse relationship between the slopes of the 

ReLES  lines and the vertical grid resolution N. It can be shown from Eq. (27) that the third criterion, 
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*N N  , is met when the simulation lies to the right of the ReLES  line with slope *
2 1 / N   that 

passes through the intersection between *  and *Re ReLES LES , as illustrated in Fig. 6. We call the 

wedge-shaped region that defines supercritical LES satisfying all three criteria * , *Re ReLES LES , 

and *N N   the “High-Accuracy Zone,” or HAZ. The LES must reside within the HAZ to meet the 
three criteria required to both eliminate the overshoot and capture the LOTW. 

A. Designing LES to capture law-of-the-wall scaling 

The objective is to systematically move the large-eddy simulation into the HAZ of the ReLES  
parameter space by combining Eq. (31) with knowledge gained from Eqs. (23) and (29). Although we 
have applied eddy viscosity closures to gain insight into the process of adjusting N ,   and ReLES  to 
systematically move the LES within the ReLES  parameter space, the basic method can be applied 
with any SFS stress model. 

1RT  and 
1ST  (and therefore  ), and LES  (and therefore ReLES ) can be 

quantified independent of SFS model, the only requirement being that all contributions to the SFS stress 
are included in defining SFS

ij  before calculating 
1ST . This relatively simple process may be described in 

two basic steps: 
1. Adjust, and hold fixed, the vertical resolution of the grid (Nz) so that when the simulation is fully 

developed, N  will exceed *N  (typically, ~1.5 2zN N N   to minimize the influence of the upper 
boundary condition). We shall point out in the next section that it is possible to over resolve in the 
vertical. 

2. Then systematically adjust the aspect ratio of the grid together with the model constant to move the 
simulation roughly along a straight line in Fig. 6 from the subcritical region of the ReLES  
parameter space into the HAZ. With eddy viscosity closures, the model constant and aspect ratio 
appear in the combination a b

t t RD C A . However to move into the HAZ with any other closure, one 
would adjust the model constant for that closure (to systematically reduce the SFS stress) together 
with a systematic increase the horizontal resolution of the grid (to systematically reduce the aspect 
ratio). 
We presume that the closure for SFS stress relies on a dissipative mechanism to model the net transfer 

of resolved turbulence energy to subfilter scale motions. With this methodology for designing LES one 
can analyze systematically what works better or worse depending on choice of model type, model details, 
model constant, grid resolution, grid structure, algorithm, geometry, etc., with some understanding of 
underlying mechanisms. This framework provides the LES community with both physical understanding 
and structure upon which a systematic procedure for LES design may be based. Once the researcher has 
become experienced with the method, s/he will be able to design high-accuracy LES more rapidly using 
her/his favorite SFS model, algorithm, code, etc. 

Whereas the model constant Ct and the model length scale t tC   are uniform in the above 
discussions, in the general eddy viscosity model the length scale t  is specified as varying with z. The 
Mason & Thomson1 modification of the length scale t  near the surface and the dynamic procedure that 
adjusts the Smagorinsky constant Cs with z (e.g., Porté-Agel et al.

25) are examples. The primary issue is 
that the level of eddy viscosity be adjusted in concert with the grid aspect ratio (i.e., the horizontal 
resolution of vertical motions) within the first few grid levels from the surface, where under-resolution is 
of primary concern and mean SFS stress competes with resolved stress.

B. Grid-independent LES and practical limits on grid resolution 

As discussed in Sect. II.C, a problem with current LES of the ABL is grid dependence in the mean 
flow. We shall show in the next section that as the simulation moves systematically into the HAZ within 
the ReLES  parameter space, a grid-independent solution for the mean velocity is achieved. However, 
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one cannot move the simulation infinitely far into the HAZ along lines of fixed vertical grid resolution 
N , since that would require that either the model constant be driven to zero (removing the model from 
the dynamical system) or the grid aspect ratio would be taken to zero (creating infinitesimally thin grid 
cells and infinite computational expense). Either of these limits will cause numerical problems and 
simulation error regardless of computational expense. Thus, for both accuracy and practical reasons, the 
optimal location for the simulation within the HAZ is near the apex of the wedge in Fig. 6 where 

*
~ , *Re Re~LES LES , and *

~N N  . 
Similarly there are practical limits on vertical resolution that, surprisingly, confine the growth of LES 

grids on any given computer. Although a minimum vertical resolution is required to move the simulation 
into the HAZ, progressive increases in vertical resolution will force the simulation onto lines in the 

ReLES  parameter space that have progressively smaller slopes, as illustrated by the dashed line in 
Fig. 6. Increases in vertical grid resolution in the absence of other adjustments will increase grid aspect 
ratio, driving   to sub critical values and restoring the overshoot along with its related errors. With eddy 
viscosity models, for example, in order that *  as N  is increased, a b

t t RD C A  must be held 
constant (Eq. 23). However, since the minimum model constant and maximum grid aspect ratio are 
bounded, grid aspect ratio must, at some point, be maintained roughly fixed with increasing vertical 
resolution, and horizontal grid resolution must increase proportionally with N . The number of grid 

points will therefore increase approximately as 3N , severely limiting the vertical resolution to modest 
values. This dilemma is reminiscent of direct numerical simulation where the highest Reynolds number 
that can be simulated accurately grows slowly with increasing computer size due to the rapid increase in 
resolution requirements with increasing Reynolds number. 

V. Numerical Experiments 

To evaluate the theory and further explore the application of the ReLES  framework to the 
development of wall bounded LES, we have carried out over 110 large-eddy simulations of the neutral 
shear-driven atmospheric boundary layer capped with an inversion layer to suppress boundary layer 
growth and produce a quasi-stationary long-time solution. The Coriolis force is included at a relatively 
high level to reduce the time to reach quasi stationary, so the mean wind is skewed relative to the 
geostrophic wind (x direction) at the first grid level (see Appendix A). The code is pseudo-spectral in the 
horizontal and finite difference in the vertical, so numerical dissipation is minimal. In the horizontal 
statistically homogeneous directions we apply periodic boundary conditions; in the vertical we apply the 
boundary conditions as described in Moeng37 and Sullivan et al.

39. We report here on simulations with the 
Smagorinsky closure and uniform grid spacing. In particular, we apply the nonlinear Moeng37 model for 
total fluctuating shear stress at the lower surface and the friction velocity is made proportional to the 
mean wind at the first grid level with a proportionality constant that can be related to the surface 
roughness length scale, 0z . A summary of the numerical algorithm and simulations is given in Appendix 
B and in several publications37,11,39,18. 

It should be noted that, in our code, dealiasing in the horizontal directions is carried out by padding 
rather than truncation. These are equivalent except in the interpretation of the grid and grid length scale: 
the grid resolutions and aspect ratios quoted in the figures are before padding and the grid length scale 

1/3( )x y z      used in the in the eddy viscosity model (Eq. 15) is also based on the pre-padded grid. In 
all plots we define the boundary layer thickness   at the height where the mean velocity gradient crosses 
zero. Whereas the number of grid points in the vertical, Nz, is defined before the simulation, the number 
of grid points within the boundary layer, N, is determined after a simulation is analyzed in the quasi-
stationary state. We were careful to determine the quasi-stationary state consistently in all simulations 
(see Appendix B). In all plots of ( ) ( )m z z   we use a value of 0.40 for 
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A. The ReLES  parameter space 

In Fig. 7 we identify in the ReLES  parameter space all the simulations carried out for the current 
study. As will be discussed below, from the predictions of ( )m z  we estimated the critical lines 

* , *Re ReLES LES , and *N N   drawn on the figures. In Fig. 7(a) different symbols are used 
according to the number of grid points in the vertical, Nz ( 1.5 N ). These show approximate 
correspondence to the straight line representations of Eq. (31) in Fig. 6 at constant slope, 2 1( / )N  . 
Note that the points in Fig. 7(a) become noticeably more linear as the simulations enter the triangular 
HAZ region of the ReLES  parameter space and 1  better represents the von Kármán constant. To 

demonstrate, as per Eq. (23), that   increases with decreasing 2 4/3
s s RD C A , in Fig. 7(b) different 

symbols are used according to 2 4/3
s RC A  creating horizontal bands of distinct symbol type consistent with 

increasing  . Note that the bands also shift to higher ReLES  with increasing   and 2 4 / 3
s RC A  as per 

Eqs. (26) and (29). 

B. The “High Accuracy Zone” (HAZ) 

To show the transition from subcritical regions of the ReLES  parameter space to the supercritical 
HAZ, consider the 16 simulations on the four paths shown in Fig. 8 with the point symbols. Each path has 
fixed vertical resolution, Nz, and progresses from lower to higher   and ReLES  along lines of constant 
Nz , roughly lines of constant slope 2 1( / )N   in Eq. (31). 

In Fig. 9 we plot ( )m z  against z/ for each of the groups of 4 simulations at fixed Nz in Fig. 8. In 

Sect. IV.A we argued for the existence of a critical vertical resolution *N  below which the surface layer 
is insufficiently resolved and the LOTW can therefore not be properly captured. The four groups of 
curves in Fig. 9 show the consequences of poor resolution of the surface layer in the vertical and provides 
an estimate for *N . In Fig. 9(a) the surface layer is resolved with, at best, 3 grid points. This clearly 
insufficient vertical resolution is associated with ( )m z  curves that incorrectly bend to the left from the 
surface with increasing z; this occurs even when   exceeds 1. Furthermore, the under-resolution of the 
surface layer in the vertical affects the mean velocity gradient and mean velocity profiles throughout the 
boundary layer; the mean gradient decreases too rapidly in z. It is not until Fig. 9(c), Nz = 96, that this 
spurious drop in m  with z transitions to the profile ( )m z  extending vertically from the surface as is 
required by LOTW. The number of grid points in the surface layer (up to z/ = 0.2) is 8- 9, suggesting 
that this is the critical resolution for the surface layer and that *N  for these large-eddy simulations is ~ 

40-45. We have drawn a line at constant slope */ 0.4 / 45N   in Figs. 7 and 8 showing how paths (a) 
and (b) remain outside the HAZ and paths (c) and (d) enter the HAZ at higher   and ReLES . 

By comparing the groups of m  curves (c) and (d) in Fig. 9, we note that as the simulations progress 
to higher   and ReLES  along lines of constant Nz, in both groups the final two curves approach grid 
independence and the LOTW is captured as the overshoot is suppressed. To study the transition in the 
surface layer in detail, and to estimate * and *ReLES , we compare the six simulations shown in Fig. 8 
with the open circles which lie along each of the two paths, Nz = 96 and Nz = 128. The variations in 

( )m z  in the lower 40% of the boundary layer for each point along the two paths are shown separately 
in Fig. 10. Comparing the upper and lower sets of figures, we observe nearly identical transitions along 
each of the two paths into the HAZ. At the lowest   and ReLES  an overshoot obscures the surface layer 

and LOTW is not predicted by the LES. As   and ReLES  increase (by decreasing 2 4 / 3
s RC A ), the same 
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transition in ( )z  takes place along each path: the overshoot progressively decreases and a region of 
constant ( )m z  progressively strengthens until a well-defined region of constant ( )m z  appears in the 

surface layer that is maintained when * and *ReLES
 exceed about 0.85 and 350, respectively, using the 

Smagorinsky closure. (The oscillations near the surface will be discussed in the next section.) The 
estimates for the lines that define the HAZ from the critical Smagorinsky model parameters * 0.85  , 

*Re 350LES  , and * 45N   are drawn in figures 7, 8, and 11(a). 
Figure 10 shows that as Nz, Cs and AR are adjusted so as to progressively move the large-eddy 

simulation from the subcritical part of the parameter space into the High-Accuracy Zone, the mean 
velocity gradient approaches a fixed point independent of the path taken into the HAZ. In Fig. 11 we plot 
normalized mean velocity gradient distributions for five of our computed large-eddy simulations within 
the HAZ at different vertical grid resolutions N  and combinations, 2 4 / 3

s RC A . Fig. 11(a) shows the 
locations of these five simulations on the ReLES  parameter space (all but the + symbol). Fig. 11(b) 
shows that these simulations within the HAZ are approximately grid-independent over the boundary layer 
depth. In Fig. 11(c) we expand the surface layer to show how the overshoot is suppressed and the LOTW 
is captured by the simulation (all but the dashed line). 

In Fig. 7(a) we also show simulations from the literature. All but the simulation by Drobinski et al.
32 

are well outside the HAZ. In two simulations, one from Andren et al.
10 and one from Porté-Agel et al.

25, 
  was sufficiently high to remove the overshoot but the vertical resolution of the grid was insufficient 
for the LES to produce LOTW scaling. 

In Fig. 11(a) the Drobinski et al.
32 simulation is indicated with the plus symbol and in Fig. 11(c) with 

the dashed line. Drobinski et al.
32 used a different numerical algorithm, a one-equation eddy viscosity 

model. Their model for surface shear stress was not indicated. Whereas their critical parameters *  and 
*ReLES  are not necessarily the same (since they used a different SFS stress closure), their simulation 

appears to be well within the HAZ (Fig. 11a), their overshoot is suppressed and they have captured 
LOTW scaling (Fig. 11c). The Drobinski et al.

32 simulation predicts a different numerical value for ( )z  
in the surface layer than do our simulations with the classical Smagorinsky closure and Moeng37 surface 
stress model. Whereas the Smagorinsky model simulations in Fig. 11 predicted a von Kármán constant  
 0.33, the Drobinski et al.

32 simulation produces a   0.35. Factors that affect the prediction of the von 
Kármán constant are discussed in section VII.C. 

It turns out that the von Kármán constant issue is associated with the development of oscillations in 
( )m z  at grid cells adjacent to the surface (Fig. 10). The oscillations grow as the simulations move 

farther into the HAZ along a line of constant Nz. As will be discussed in Sect. VII, the oscillations 
originate in the spurious nature of the lower boundary condition for fluctuating surface shear stress. This 
observation is interesting, in part, because it has been previously reported that LES of the ABL is 
insensitive to the details of the lower stress boundary condition11,40. These simulations, however, were 
outside the HAZ and in the presence of the overshoot and its frictional source. 
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FIG. 1. Examples of the overshoot in mean shear from previous LES studies: (a) Sullivan et al.
11. 

(b) Kosovic24. (c) Porté-Agel et al
25, and (d) Chow et al.

27. In (a) zi is the ABL depth defined in 
the traditional manner as the height where vertical turbulent heat flux is a minimum. In (b) z is 
scaled on * /u f , where f is the Coriolis parameter (the angular velocity at the earth's surface). 
The simulations in (c) and (d) are pseudo-ABL/channel-flow simulations which do not contain a 
capping inversion and instead apply fixed horizontal velocity at z = H.  = 0.4 was assumed in 
forming m .
 
  

(a) 
(b) 

(c) 

(d) 
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FIG. 2. The “logarithmic layer mismatch” in the smooth-wall turbulent channel flow detached-
eddy simulations of Nikitin et al.

14, discussed by Spalart15. Curve A4 is the simulation in (b); 
Re 20,000  . (a) */U U u   plotted against /z z 

  . (b) The “log layer mismatch” shown 
by the upper oval in (a) is shown here to be an overshoot in normalized mean shear m , negating 
LOTW scaling over the surface layer. Figure (b) was kindly generated by Spalart (private 
communication).  is assumed to be 0.4. 
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FIG. 3. DNS of the smooth-wall channel flow showing the physically real overshoot in the 
viscous region. (a) Normalized mean shear m  vs. z . (b) Wall-normalized Reynolds shear 
stress tT   (filled symbols) and mean viscous shear stress, T

  (open symbols) vs. z . The dotted, 
dashed and thin straight lines are the total shear stress profiles for Reynolds number of 300, 395, 
and 642, respectively.  (c) m vs. /z  , where  is  the half-channel height. (d) tT  (filled 
symbols) and T

  (open symbols) vs. /z  . Total shear stress profiles for three different Reynolds 
number collapse on to a single linear line.  = 0.4 is assumed in forming m . Re  = 300, 395 
and 642 DNS data are from Iwamoto et al.

34 and Iwamoto35; In (c) we have added the Re = 
2003 DNS data from Hoyas & Jimenez36. The horizontal dashed lines in (c) and (d) indicated the 
upper margin of the surface layer where LOTW should be predicted. 
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FIG. 4. Overshoot in LES of the neutral ABL using the Smagorinsky model ( 0.2sC  ) and a 
128 128 128   grid. (a) m , vs. LESz . (b) Wall normalized mean resolved and SFS shear stress, 

RT  , and ST   plotted against LESz , and its sum.  = 0.4 is assumed in forming m .  = 0.4 is 
assumed in forming m . 
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FIG. 5. Overshoots in LES of the neutral ABL. (a) m vs. +
LESz . (b) Normalized resolved 

Reynolds stress RT  (filled symbols) and mean SFS shear stress ST   (open symbols) vs. +
LESz . 

Dotted, dashed and thin lines are the sum of resolved and SFS stress, from low to high LES 
Reynolds number.  (c) m  vs. /z  , where  is defined as the height where 0m  . (d) RT   
(filled symbols) and ST  (open symbols) vs. /z  . The LES Reynolds numbers of the simulations 
are shown in (a). In order of ReLES , the Smagorinsky constants and grids were: (

0.1, 42 42 96sC    ), ( 0.2,192 192 128sC    ), and ( 0.1,128 128 256sC    ). The thin 
black line in (c) is a simulation with such low ReLES that turbulence is barely sustained (

0.2, 42 42 32sC     and Re 38.LES  ). The horizontal dashed lines in (c) and (d) indicated the 
upper margin of the surface layer where LOTW should be predicted.  = 0.4 is assumed in 
forming m . 
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FIG. 6. Schematic of the structure of the LESRe  parameter space. This parameter space 
underlies the framework we propose for designing an LES that is capable of predicting LOTW 
scaling for /U z  . 
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FIG. 7. The simulations carried out for this study shown on the LESRe  parameter space. (a) 
The LES grouped according to zN , where zN = 32(), 64(), 96(), 128(), 160() and 
256(). Also included are LES from several previous studies by Andren et al. 1994 (), 
Sullivan et al.11 (Δ), Porté-Agel et al.

25 (), Chow et al. 2005 27 () and Drobinski et al.32 (). 
(b) The LES grouped according to 2 4/3

RAs sD C . 
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FIG. 8. The systematic variations on the ReLES  parameter space for the simulations plotted in 
Figs. 9 and 10. Fig. 9(a) shows four simulations with the same vertical resolution, zN  32, but 
decreasing 2 4/3

RAsC  represented by , , , . The vertical resolutions in Figs. 9(b,c,d) are 
zN  64, 96, 128, respectively.  The open circles show the locations of the 6 simulations in Figs. 

9(a,b). The vertical resolutions in Figs. 10(a,b) are Nz = 96, 128, respectively.  
 
 
 

 

(9a) (9b) 

(9d) 

(10b) 
(9c,10a) 
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FIG. 9. Effect of vertical grid resolution on the LES predictions of mean shear. Refer to Fig. 8 
for the locations of the individual simulations on the ReLES  parameter space.   and ReLES  
progressively increase in each figure in this order: , , , . (a) 32zN  , x yN N  increased 
from 32() to 128(). (b) 64zN  , x yN N  increased from 64() to 240(). (c) 96zN  , 

x yN N increased from 64() to 288().  (d) 128zN  , x yN N  increased from 64() to 
360().  = 0.4 is assumed in forming m .  is defined as the height where 0m  . The 
dashed horizontal lines indicated the upper margin of the surface layer. 
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FIG. 10. Change of structure of ( )m z  as the LES move towards and into the HAZ. Refer to Fig. 
8 for the locations of the individual simulations on the ReLES  parameter space;   and ReLES  
progressively increase in each panel from left to right. Top panel: LES with 96zN  . Bottom 
panel: LES with 128zN  . ReLES  and  are given on top of each figure, as ( Re ,LES  ).  = 0.4 is 
assumed in forming m .  is defined as the height where 0m  . The horizontal dashed lines 
indicate roughly the upper-most margin of the surface layer. 
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FIG. 11. Five simulations in the HAZ at different N  and 2 4 / 3
s s RD C A , demonstrating the 

convergence of the predictions of ( )m z  to a relatively grid-independent solution without the 
overshoot and capturing the LOTW. Figure (a) gives the locations of the 5 simulations in HAZ. 

( )m z  from Drobinski et al.
32 are given in (c) with the dashed curve and in (a) with the plus 

symbol (+).  = 0.4 is assumed in forming m .  is defined as the height where 0m  . 
 


